Medical Image Recognition by Revised GMDH-type Neural Network Algorithm with a Feedback Loop Identifying Sigmoid Function Neural Network
نویسندگان
چکیده
منابع مشابه
Revised Gmdh-type Neural Network Algorithm with a Feedback Loop Identifying Sigmoid Function Neural Network
In this paper, a revised Group Method of Data Handling (GMDH)-type neural network algorithm with a feedback loop identifying sigmoid function neural network is proposed. In this algorithm, the optimum sigmoid function neural network architecture is automatically organized so as to minimize the prediction error criterion defined as Akaike’s Information Criterion (AIC) or Prediction Sum of Square...
متن کاملFeedback Gmdh-type Neural Network and Its Application to Medical Image Analysis of Liver Cancer
A feedback Group Method of Data Handling (GMDH)-type neural network algorithm is proposed, and is applied to nonlinear system identification and medical image analysis of liver cancer. In this feedback GMDH-type neural network algorithm, the optimum neural network architecture is automatically selected from three types of neural network architectures, such as sigmoid function neural network, ra...
متن کاملNeural Network Training Using a GMDH Type Algorithm
Authors have developed a Group Method of Data Handling (GMDH) type algorithm for designing multilayered neural networks. The algorithm is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equa...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملIdentifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
سال: 2006
ISSN: 2188-4730,2188-4749
DOI: 10.5687/sss.2006.143